ournal of Organometallic Chemistry, 232 (1982) 9–11 Isevier Sequoia S.A., Lausanne – Printed in The Netherlands

'IBRATIONAL SPECTRA OF HEXAMETHYLCYCLODISILAZANE

'. VESZPRÉMI, L. BIHÁTSI

stitute for Inorganic Chemistry, Polytechnical University, H-1521 Budapest (Hungary)

nd M. GÁL

'ötvös L. University, Department of General and Inorganic Chemistry, Budapest H-1088 lúzeum krt. 6–8 (Hungary)

Received January 4th, 1982)

jummary

The geometry of hexamethylcyclodisilazane has been investigated by infraed and Raman spectroscopy. The assignment of the bands can be very satisfacorily made by assuming D_{2h} symmetry for the molecule.

Recent X-ray diffraction investigations have revealed the interesting molecular structure of some phenylcyclodisilazanes [1-3]. The full-methylated derivative, however, is liquid in room temperature, and so an X-ray diffraction experinent is difficult. Since the geometry of four-membered ring compounds depends strongly on the nature of substituents [4] the plane structure of the four-nembered ring cannot be assumed without experimental proof.

We have now investigated the structure of hexamethylcyclodisilazane by neans of IR and Raman spectrophotometry.

Experimental

The IR spectrum was recorded on a Nicolet 7000 instrument using KBr plates. The range 400-50 cm⁻¹ was studied on a Grub Parson FIR instrument. The Raman spectrum was recorded on a Ramanor HG-2S instrument using 514.3 nm light from an argon ion laser.

Results

If D_{2h} symmetry is assumed the molecule must contain a symmetry centre. According to the exclusion rule the vibrations appear alternately in the Raman and IR spectra. Neglecting the H-atoms the molecular skeletal vibrations can be characterised by 24 normal modes (Table 1).

1022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

ŧ

Species	Vibration	Activity	
ag	skel, skel, $\nu(NC)$, $\nu_s(SiC_2)$, $\beta_s(SiC_2)$	R.	
au	$\tau(SiC_2)$	inactive	
b _{1g}	$\nu_{as}(SiC_2), \beta_{as}(SiC_2)$	R	
b1u	skel, $v(NC)$, $\gamma(SiC_2)$	IR	
62g	$\gamma(NC), \tau(SiC_2)$	R	
b2u	skel, $\beta(NC)$, $\nu_s(SiC_2)$, $\beta_s(SiC_2)$	IR	
b _{3g}	skel, $\beta(NC)$, $\gamma_s(SiC_2)$	R	
b3u	skel, $\gamma(NC)$, $\nu_{as}(SiC_2)$, $\beta_{as}(SiC_2)$	IR	

The experimental frequencies and the assignments are shown in Table 2. The assignments can be very satisfactorily made by assuming D_{2h} symmetry. Two skeletal vibrations (in plane deformation and ring puckering) which are probably situated at very low frequency [5], could not be found. The vibration $\gamma(NC)$ (b_{3u}) is probably very weak and close to the vibration $\beta_{as}(SiC)$ (b_{3u}) at 240 cm⁻¹.

Some vibrations clearly show the operation of the exclusion rule, e.g. the skeletal vibration at 595 cm⁻¹ in the infrared spectrum or the totally symmetric "breathing" mode at 552 cm⁻¹ and the in-plane deformation vibration at 421 cm⁻¹ in Raman spectrum.

TABLE 2

IR AND RAMAN VIBRATIONS AND ASSIGNMENTS FOR THE HEXAMETHYLCYCLODISILAZANE SKELETON (cm $^{-1}$)

Raman			IR.'		Assignment
Wave number (cm ⁻¹)	Relative intensity	Depo- larised	Wave number (cm ⁻¹)	Relative intensity	
1259	3	0.19		······································	ag vs(NC)
			1195	vs	$b_{1u}v_{as}(NC)$
871	2	0.71			b3g skel.
			860	vs	b _{1u} skel.
			785	s	b3u vas(SiC2)
769	5	0.75			$b_{1g} v_{as}(SiC_2)$
725	11	0.34			$a_{\mathbf{g}} \tilde{v}_{s}(SiC_{2})$
			680	w	$b_{211} v_{\rm s}({\rm SiC}_2)$
676	5	0.75			$b_{3g}\beta(NC)$
			630	vw	$b_{2n}\beta(NC)$
			595	w	b _{2u} skel.
552	100	0.01			ag skel.
421	76	0.01			$a_g^{\beta}\beta_s(SiC_2)$
			383	m	$b_{2u}\beta_{s}(SiC_{2})$
292	3	0.75			$b_{2g} \gamma(NC)$
245	8	0.72			$b_{1g}\beta_{as}(SiC_2)$
			240	m	$b_{3u} \beta_{as}(SiC)$
203	22	0.59			$b_{3g} \gamma_{s}(SiC_2)$
			190	w	$b_{1u} \gamma_{s}(SiC_2)$
177	13	0,75			$b_{2g} \tau(SiC_2)$

TABLE 1

Acknowledgements

The authors are grateful to Dr. J. Mink for his valuable advices and to Dr. G. Jalsovszky for expert recording of the IR spectrum.

References

- 1 L. Párkányi, Gy. Argay, P. Hencsei and J. Nagy, J. Organometal. Chem., 116 (1976) 229.
- 2 L. Párkányi, M. Dunaj-Jurčo, L. Bihátsi and P. Hencsei, Cryst. Struct. Commun., 9 (1980) 1049.
- 3 L. Bihátsi, P. Hencsei and L. Párkányi, J. Organometal. Chem., 219 (1981) 145.
- 4 F.M. Tesky, R. Mews and B. Krebs, Angew. Chem., 91 (1979) 231.
- 5 E. Knözinger, Angew. Chem., 88 (1976) 1.